
Client Confidential

Production ready XMSS

Frans van Dorsselaer
Maximilian Fillinger, Pepijn Westen, Thomas Schaap
Niels Musters



2

Contents

• Origin of this library

• XMSS in a nutshell

• Use cases

• Requirements

• Fault Resilience

• Verification & Signing

• Guidance, Assurance, Evaluation



3

XMSS (features)

• Public key signatures, PQ-safe

• Extremely secure, only requires preimage resistance of hash function
(widely accepted; NIST, NLNCSA, …)

• Predetermined maximum number of signatures
(ranging from 1,000 to 1,000,000)

• Stateful
(private key needs to be updated when signing)



4

XMSS (numbers)

• Public key: < 100 bytes

• Private key:
• Static: < 200 bytes
• Dynamic: < 100 bytes
• Cache (optional): up to a few megabytes

• Signature: about 2 kiB

• Key generation is slow: > 1 billion hashes



5

Use cases → Firmware, Authenticity, …

• Signing at manufacturer
(trusted environment, trusted equipment)

• Verification in device
(untrusted environment)

• Examples:

• Automotive

• Smart meter



6

Asymmetric requirements

• Signing:

• State storage

• Backup / load-balancing redundancy

• Bit error resilience

• Verification:

• Fast

• Small

• Fault injection resilience



7

Bit error resilience

• Simple booleans are too naive

• Use Hamming(8,4), don’t use all 0s or all 1s

• 8-bit helps platforms such as ARM (immediate addressing mode)

• Redundancy

• Perform critical operations multiple times and compare results

• Store values in multiple fields and compare pre- and post-operation

• Integrity

• Digest all critical data pre- and post-operation



8

Fault injection resilience (verification only)

On top of bit error resilience: protect against power/clock glitching

Example attacks:

• (timed) instruction skipping at boot

• (timed) data manipulation at boot



9

Hardware platform dependency (verification)

A generic software implementation can never provide fault injection resilience!

• The API was designed to enable (facilitate) resilience,
at no cost for those that do not require it.

• API supports all scenarios:

• Minimum size

• Maximum performance

• Maximum resilience



10

Verification library

Design goals:

• Small
• Unused algorithm (SHA-2 or SHAKE) can be disabled at compile time

• Fast
• Even when verifying multiple times for resilience

• Pluggable
• Allow use of hardware accelerated hash implementation

Result:
XmssError xmss_calculate_expected_public_key(
XmssValue256 *restrict expected_public_key,
const XmssBuffer *restrict msg,
const XmssPublicKeyBlob *restrict pub_key,
const XmssSignatureBlob *restrict signature);



11

Verification example

• Raspberry Pi Pico microcontroller

• SHA-256 (SHAKE256/256 disabled)

→ 1,800 bytes code

→ < 2k RAM



12

Signing (storage)

API separates:

• Static part (small, stored once)

• Dynamic part (small, stored often)

• Public cache part (large, stored once, not required)

This allows smartcard implementations, PCs, etc.

Storing is done before signing. Multiple signatures can be reserved.



13

Signing (backup)

Contradiction:

• Long-term availability requires backups

• State must never be reused; implies no backups

API solution: partitioning (the RFC way, not the NIST way)

• Each partition can be sub-divided

• Consecutive partitions can be glued

Solves both backups and redundancy (active-active)



14

Signing (key generation)

Random must be provided by user; the library is deterministic (requirement).

API supports generating the key in parts for:

• Easy progress monitoring

• Multithreading

Example: largest key on Intel i9: < 2 minutes.

(on a smartcard probably > 1 day).



15

Fox Crypto additional security feature

Standard XMSS leaks:

• Number of signatures generated

• Partition used

→ Index obfuscation

Pseudo-random permutation (Fisher-Yates shuffle) of indices.

Fully compatible with standard XMSS, transparent for verification.



16

Guidance

Library is available at https://github.com/FoxCryptoNL/xmss

Free (MIT license)

Includes guidance for:

• Resilience

• Storage

• Backups

• Hardware acceleration

• Public key pinning

https://github.com/FoxCryptoNL/xmss


17

Guidance example



18

Assurance / Evaluation

Fox Crypto on premise:

• Evaluation evidence: targets Common Criteria EAL5

• To be published later:

• Test suite (already developed)

• Examples

• High level language wrappers



19

Q&A


