
1

Post-quantum Cryptography
at Google

Stefan Kölbl
Symposium PQC, Netherlands
June 13th, 2023

22

1. Our view on post-quantum cryptography

2. Deploying PQC at scale

3. Engineering to ease migration

Agenda

3

Part I - Where are we today?

44

https://ai.googleblog.com/2023/02/suppressing-quantum-errors-by-scaling.html

When will we get a quantum computer?

https://ai.googleblog.com/2023/02/suppressing-quantum-errors-by-scaling.html

55

When will we get a quantum computer?

https://www.ibm.com/quantum/roadmap

https://www.ibm.com/quantum/roadmap

66

When will we get a quantum computer?

https://www.ibm.com/quantum/roadmap

To break RSA we will need thousands of *logical* qubits

https://www.ibm.com/quantum/roadmap

77
https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/

When will we get a quantum computer?

https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/

8

Why care about a
threat that does not

exist yet?
8

99

Why we care about this today

Impact of
cryptography failing

Migration takes a
long time

Store now – decrypt
later

1010

PQC Standards
Algorithms
● IETF RFC-8391, RFC-8554, ISO 14888-4 & NIST SP 800-208

● Scope: Stateful Hash-Based Signatures
● Status: Published (ISO in DIS stage)

● NIST PQC Competition
○ Scope: KEMs, Signatures
○ Status: Drafts soon, standards ~Mid 2024

● ISO/IEC
○ Scope: KEMs
○ Status: Recently started

1111

PQC Standards

1212

PQC Challenges - Hardware
Challenges
● Long development cycles
● Long devices lifetime
● Difficulty to upgrade
● Resource constrained environments

Devices
● Root of trust
● Security keys
● Consumer devices

1313

PQC Challenges - Performance

1414

PQC Challenges - Performance
Challenges with fancy crypto:
● Blind Signatures
● (V)OPRF (e.g. Privacy Pass)

○ Communication overhead >100MB*

*See https://eprint.iacr.org/2023/232

Huge performance gap between classic <-> PQC

https://eprint.iacr.org/2023/232

1515

PQC Challenges - State management
LMS/XMSS (stateful hash-based signatures)
● Only makes sense if SPHINCS+ performance is prohibitive.
● State management complicates signing infrastructure significantly.

Slowly sees adoption:
● Recommended by CNSA 2.0, ANSII (France), BSI (Germany)
● Already used in: OpenSSH, mbedTLS, Infineon TPM

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://www.ssi.gouv.fr/uploads/2022/01/anssi-technical_position_papers-post_quantum_cryptography_transition.pdf
https://docbox.etsi.org/Workshop/2023/02_QUANTUMSAFECRYPTOGRAPHY/TECHNICALTRACK/WORLDTOUR/BSI_KOUSIDIS.pdf
https://github.com/openssh
https://github.com/Mbed-TLS/mbedtls
https://www.infineon.com/cms/en/about-infineon/press/market-news/2022/INFCSS202202-051.html

1616

PQC Priorities

As a large organization, where do you even
start?

1717

PQC Priorities
1) Encryption in Transit
2) Signatures, when Public Keys are hard to change
3) All other Asymmetric Cryptography
4) Symmetric Cryptography

18

Part II - Encryption in Transit

1919

ALTS: Overview

2020

Bringing PQC to ALTS

https://cloud.google.com/blog/products/identity-security/why-g
oogle-now-uses-post-quantum-cryptography-for-internal-comms/

● ALTS protects all our internal traffic

● Ideal candidate for early PQC adoption

● Enabled a PQC algorithm

○ Deployed in Hybrid mode

○ X25519 + HRSS

https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms/
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms/

2121

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit
● static ECDH key
● cert for ECDH key

ServerInit

● static ECDH key
● cert for ECDH key

ServerFinished
● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

2222

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit
● static ECDH key
● cert for ECDH key
● resumption ticket

ServerInit

● resumption confirmation

ServerFinished
● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS: Overview

2323

PQC Overview
Protocol Overhead (estimate)
X25519 Keyshare
Certificate
HRSS public key/ciphertext

2424

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit
● static ECDH key
● cert for ECDH key
● ephemeral PQC public key

ServerInit

● static ECDH key
● cert for ECDH key
● PQC KEM ciphertext

ServerFinished
● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

2525

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit
● static ECDH key
● cert for ECDH key
● somewhat ephemeral PQC public key

ServerInit

● static ECDH key
● cert for ECDH key
● PQC KEM ciphertext

ServerFinished
● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

2626

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit
● static ECDH key
● cert for ECDH key
● resumption ticket
● somewhat ephemeral PQC

public key
ServerInit

● resumption confirmation
● PQC KEM ciphertext

ServerFinished
● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

2727

Encryption in transit

2828

Bringing PQC to end-users
● Traffic to user protected by TLS

● Chrome supporting hybrid

key-exchange:

○ CECPQ1 (2016)

○ CECPQ2 (2019)

More info at: https://www.imperialviolet.org/2019/10/30/pqsivssl.html and
https://blog.cloudflare.com/the-tls-post-quantum-experiment/

https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://blog.cloudflare.com/the-tls-post-quantum-experiment/

2929

Bringing PQC to end-users
● Download Chrome Canary

○ https://www.google.com/chrome/canary/

● Example test site:

○ https://pq.cloudflareresearch.com/

https://www.google.com/chrome/canary/
https://pq.cloudflareresearch.com/

3030

Bringing PQC to end-users
● Download Chrome Canary

○ https://www.google.com/chrome/canary/

● Example test site:

○ https://pq.cloudflareresearch.com/

https://www.google.com/chrome/canary/
https://pq.cloudflareresearch.com/

3131

Bringing PQC to end-users

32

Part III - Engineer for agility

3333

Crypto Agility at Google
Our main goal is to make crypto usable for engineers:
● RWC’18: Achieving high availability in the internal Google KMS.
● RWC’19: Tink: A cryptographic library.
● RWC’21: What’s in a key?
● RWC’23: Crypto Agility and Post-Quantum Cryptography

https://youtu.be/5T_c-lqgjso?t=577
https://www.youtube.com/watch?v=pqev9r3rUJs&t=9665s
https://youtu.be/CiH6iqjWpt8?t=1028
https://youtu.be/IAOWRO9Qn10?t=107

3434

Tink
● A multi language and multi-platform open

source cryptography library.
● https://github.com/google/tink

https://github.com/google/tink

3535

Tink

Enforce best
practices

Don’t burden
the user

Reliability

3636

Tink - Keysets
Core concept is that users always use a keyset
● A set of keys which implement the same

primitive.
● Facilitates key rotation.

Keyset - Signature

#2 ECDSAP256 {...}

#3 RSA-PSS {...}

#1 ECDSAP256 {...}

3737

KeysetHandle

Tink - Keyset handle
● Restricts access to sensitive data
● Provides API to obtain a primitive wrapping

the keyset, e.g. for signatures:
○ sign(...), uses primary key #1
○ verify(...), finds key to verify

Keyset - Signature

#2 ECDSAP256 {...}

#3 RSA-PSS {...}

#1 ECDSAP256 {...}

3838

Example: Signing data
import tink

from tink import signature

Create a keyset with a single key and get a handle to it.

keyset_handle = // Fetch the key from a KMS

Wrap the keyset into a signing primitive.

sign_primitive = keyset_handle.primitive(signature.PublicKeySign)

Use the primitive to sign (uses the primary key!).

signature = sign_primitive.sign(“mymessage”)

3939

Key Rotation
KeysetHandle

Keyset - Signature

#2 ECDSAP256 {...}

#1 ECDSAP256 {...}

Key #2 is primary key

4040

Key Rotation
KeysetHandle

Keyset - Signature

#2 ECDSAP256 {...}

#1 ECDSAP256 {...}

Key #2 is primary key

Tink manages which key is used:
● #2 will sign any new data.
● {#1, #2} will verify signatures.

4141

Key Rotation
KeysetHandle

Keyset - Signature

#2 ECDSAP256 {...}

#1 ECDSAP256 {...}

Key #2 is primary key

KeysetHandle

Keyset - Signature

#2 ECDSAP256 {...}

#1 ECDSAP256 {...}

#3 Dilithium2 {...}

KeysetHandle

Keyset - Signature

#2 ECDSAP256 {...}

#1 ECDSAP256 {...}

#3 Dilithium2 {...}

Key #2 is primary key
Key #3 is added

Key #3 is primary key

4242

Key rotation
Key rotation should happen automatically
● Forward secrecy.
● Enables speedy recovery from compromise at low operational risk.
● Simplifies switching keys ⇒ Transition to post-quantum crypto.

In practice hard to enforce:
● Reliability risks (see RWC’23)

https://youtu.be/IAOWRO9Qn10?t=107

4343

01 02
Invest in tooling
Building the right tools for your engineers
can ease complex issues around key
management, and make migration easier.

03

Takeaways

Rolling out PQC
We started working on ALTS PQC in 2020,
and are now finally getting ready to have
rolled out PQC for all jobs, with many
unforeseen obstacles along the way.

Hybrid deployment
Hybrid deployment allows us to experiment
with PQC without risking security
regressions. In the worst case, we learned
something in an experiment, in the best
case we have already mitigated
store-now-decrypt later

44

Thank you

